
1

Redefining Penetration Testing:
A Deterministic and Non-Deterministic Approach Through the Adversarial

Penetration Testing Model (APTM)

Peter Thermos

peter.thermos@palindrometech.com

Abstract
While traditional penetration testing methods have proven valuable in certain contexts, they are increasingly

inadequate in addressing the complex, dynamic, and adaptive nature of modern cyber threats and

vulnerabilities due to the increasing complexity of emerging technologies and products. The over-reliance on

predefined toolkits, rigid checklists, and limited adaptability renders significant gaps in vulnerability discovery

and exploitation, leaving organizations exposed to emerging and sophisticated attacks.

In light of these shortcomings, the Adversarial Penetration Testing Model (APTM) seeks to overcome these

limitations by introducing a mathematical and system-oriented framework that models goal-oriented

adversarial simulations, enabling more intelligent, probabilistic, and adaptive strategies with dynamic feedback

loops that better simulate the evolving nature of real-world adversaries and realistic approach to offensive

security.

1 Introduction
Penetration testing has long been a cornerstone of

cybersecurity practices, focusing on evaluating

systems by simulating potential attacks to identify

vulnerabilities before they can be exploited by

adversaries. Traditional penetration testing is often

carried out using a series of scripted procedures

and tools in predefined methodologies. This

process, though valuable, is limited in several

significant ways, especially as cybersecurity threats

evolve and organizations expand their

infrastructure footprint by adopting and

integrating new technologies which increases their

attack surface.

Early Work: The Emergence of Penetration

Testing

1 The term "Tiger Team" emerged in the
1960s when the U.S. Air Force assembled
small teams of experts to test the security and
integrity of critical systems.

Penetration testing in its early stages was heavily

influenced by a military concept known as the Red

Team and in certain scientific research

environments was also known as Tiger Team12.

The Red Team was tasked with simulating real-

world attacks against a defense structure to assess

the readiness of the defending team. These

exercises evolved into the modern practices of

vulnerability assessments and penetration testing,

wherein "ethical hackers" (often part of a security

team) are tasked with identifying weaknesses in an

organization’s defenses.

By the late 1990s and early 2000s, the field of

penetration testing became formalized with the

creation of standardized methodologies and

toolkits. These standardized tools, such as

vulnerability scanners (i.e., Pingware, ISS Scanner,

Nessus, NeXpose), vulnerability exploitation

frameworks (e.g., Canvas, Metasploit), web

application scanners (e.g., Burpsuite, ZAP) among

2 Bellcore’s Security & Fraud group had an
established Tiger Team in late 80’s - early 90’s
which assisted commercial and government
organizations with forensic analyses and
penetration testing exercises.

2

others, formed the backbone of a structured,

methodical approach to security testing.

Penetration testers would follow pre-built

playbooks, often working through vulnerability

scanners, manual exploitation techniques, and

simulated social engineering attacks.

The Rise of Red Teaming and Offensive Security

However, as cybersecurity threats became more

sophisticated, the limitations of traditional

penetration testing began to show. Static

approaches relying on predefined scripts failed to

replicate the complexity of real-world adversaries.

In response, the concept of Red Teaming emerged

as a more comprehensive and adversarial testing

method. Red Teaming takes penetration testing a

step further by incorporating real-time

simulations, creative problem-solving, and testing

for emerging vulnerabilities. Red Team

engagements often simulate adversaries who are

highly adaptive, using a range of attack vectors and

focusing on how an adversary might think, plan,

and adapt during an attack.

Although Red Teaming improved the realism of

adversary simulations, it has limitations in

scalability, adaptability, and feedback mechanisms.

Red teams could only operate within specific

frameworks, and despite their creativity, the

outcomes were still constrained by a relatively

small set of predefined tactics. Additionally, Red

Teams traditionally lacked the ability to evolve and

adapt as real-time threats developed.

The Need for a More Dynamic Model: The APTM

As the landscape of cybersecurity continues to

evolve with new attack vectors, advanced

persistent threats (APTs), and increasingly

sophisticated attackers, traditional approaches like

static penetration testing and Red Teaming are

beginning to fall short. Adversaries are no longer

easily predictable; instead, they are adaptive,

leveraging a wide array of tools and techniques

that evolve dynamically over time. The ability to

mimic this type of behavior is crucial for providing

more robust security assessments.

In traditional penetration testing, the focus is often

on a series of deterministic actions based on

known vulnerabilities, such as exploiting CVEs

(Common Vulnerabilities and Exposures) or

performing a set of predefined steps. However,

these methods overlook the complexity of real-

world adversaries, who adapt based on the

information they gather and the defenses they

encounter.

Thus, the need for a more advanced model that

embraces not just deterministic (predefined)

actions, but also non-deterministic (probabilistic

and adaptive) methods, has become clear. This is

where the Adversarial Penetration Testing

Model (APTM) comes in. The APTM is a novel

framework that blends deterministic and non-

deterministic strategies to simulate adversarial

behavior in a more flexible and realistic way.

The APTM introduces a formal mathematical

structure, leveraging concepts from systems

theory[2], game theory [10], and probabilistic

decision-making [11], to model the adversarial

penetration testing process. It moves beyond

simply testing for known vulnerabilities to

incorporating strategies that adapt to changing

defenses, new attack paths, and evolving

environmental factors. By integrating both

deterministic and non-deterministic actions, the

APTM allows for a more comprehensive, adaptable,

and realistic testing environment that mirrors the

unpredictable nature of real-world attacks.

2 Traditional Penetration

Testing: Limitations
Traditional penetration testing (also known as

"pen testing") has long been a standard

methodology for identifying vulnerabilities within

an organization's infrastructure. The primary goal

of penetration testing is to simulate real-world

attacks on systems, applications, or networks to

identify weaknesses before they can be exploited

by malicious actors. While effective in some

contexts, traditional penetration testing has

notable limitations that hinder its ability to fully

replicate the behavior of real-world adversaries

and adapt to the increasingly complex threat

landscape.

2.1 Over-Reliance on Predefined Toolkits

Penetration testing often relies heavily on a

combination of commercial and open-source tools,

such as Nessus, Metasploit, and Burp Suite. These

tools are preconfigured with known exploits,

vulnerabilities, and attack patterns, which testers

execute in a scripted or semi-scripted manner.

3

While this approach is useful for finding well-

documented vulnerabilities, it is inherently limited

in the following ways:

Known Exploits: Traditional penetration tests

often focus on known exploits or CVEs (Common

Vulnerabilities and Exposures), which are well-

documented and easy to replicate. However, as

organizations update their systems and patch

vulnerabilities, the effectiveness of these tools

diminishes. Furthermore, new, zero-day

vulnerabilities (those that have not been

documented or publicly disclosed) are often

outside the scope of traditional testing methods.

Tool Limitations: Many of the tools used in

traditional penetration testing operate within

predefined, rigid frameworks. For example, a tool

such as Metasploit may automatically execute an

attack based on the available exploit modules, but

it lacks the adaptive capabilities needed to respond

to defenses in real-time. This reliance on

predefined toolkits means that penetration testers

are often confined to the capabilities and

limitations of these tools, which may not account

for novel or evolving attack strategies.

Static Testing: These toolkits typically follow a

scripted sequence of tests, making them ill-suited

to replicate the complexity and unpredictability of

real-world adversaries, who frequently adapt their

strategies based on the environment they

encounter.

2.2 Checklists and Template-Driven

Methodologies

Traditional penetration testing often follows a

checklist-driven approach, where testers are

required to validate a fixed set of known

vulnerabilities or configurations. This method has

been the foundation for several penetration testing

frameworks, including the OWASP Top 10, the

PTES (Penetration Testing Execution Standard),

and NIST guidelines.

While checklists offer structure and ensure that

fundamental security issues are covered, they are

also highly limited in several ways:

Inflexibility: Checklists enforce a rigid testing

process that doesn’t allow for real-time flexibility

or adaptation. They focus heavily on identifying

known issues and vulnerabilities in a

predetermined order. If an adversary were to

discover an unknown vulnerability during an

attack, it would be missed by a test that follows a

fixed checklist.

Lack of Contextualization: Traditional

methodologies do not account for the dynamic

nature of a network or system’s evolving threat

landscape. For example, they may fail to recognize

vulnerabilities that arise as the result of complex

system configurations, or changes in the security

posture due to patching, misconfigurations, or

human error.

Failure to Simulate Evolving Attacks: Real-world

adversaries often change their tactics, techniques,

and procedures (TTPs) based on the evolving

defenses they encounter. A checklist-driven

approach does not effectively simulate the dynamic

nature of a sophisticated adversary who may

switch strategies mid-attack to bypass detection or

exploit an unanticipated vulnerability.

2.3 Poor Adaptability and Real-Time

Feedback

Traditional penetration testing often lacks

adaptability, meaning that once an assessment is

conducted, there is little to no follow-up or

iterative refinement based on the results. This is

problematic because real-world adversaries are

constantly adjusting their attack strategies based

on the defenses they face.

Limited Learning: Traditional penetration testing

does not include a feedback loop that allows the

penetration tester to adjust tactics based on the

environment or system's responses. Once an action

is executed (such as exploiting a vulnerability),

testers typically do not reassess or modify their

approach dynamically. In contrast, real adversaries

gather information during their attacks and adjust

their strategies accordingly.

Post-Test Evaluation: After a penetration test,

reports are typically produced that list the

vulnerabilities found and offer recommendations

for mitigation. However, this post-test evaluation

does not support real-time adaptations or learning

from the environment. Furthermore, without a

continuous feedback loop, the lessons learned

during the test may not be applied to future

engagements.

Missed Opportunities for Simulating Real-

World Attacks: In a dynamic environment,

4

attackers may change tactics based on unforeseen

defensive measures, such as the activation of an

Intrusion Detection System (IDS) or the detection

of unusual network traffic patterns. Traditional

testing often fails to simulate these real-time,

adaptive responses.

2.4 Limited Coverage of Complex and

Unknown Attack Paths

Traditional penetration testing primarily focuses

on testing systems in isolation, often overlooking

the interconnections and interactions between

components. In the modern threat landscape,

attackers often exploit vulnerabilities that are not

isolated to a single system or device, but rather

span across networks, applications, and user

behaviors.

Lateral Movement: Attackers rarely confine their

actions to a single compromised machine. Instead,

they move laterally across the network, looking for

other systems to compromise and leveraging

privileges from one system to escalate their access

on others. Traditional penetration tests often miss

these complex attack paths due to their narrow

scope, which typically focuses on individual

systems or components.

Blind Spots in Network Topology: In many cases,

traditional penetration tests miss vulnerabilities in

network design, firewall configurations, or

misconfigurations in cloud infrastructures. These

blind spots are often overlooked by traditional

methods that focus on only testing visible,

accessible systems. Attackers who can discover

hidden or unmonitored systems, misconfigured

access points, or poorly secured APIs often have

greater success than what traditional penetration

testing might predict.

Human Factors: Traditional penetration testing

may also underplay the role of human factors in

security. Social engineering, phishing attacks, and

other human-driven attack vectors are often

glossed over in favor of automated, tool-based

exploitation. However, modern adversaries

recognize the importance of human targets and

may prioritize social engineering tactics to bypass

technical defenses. Traditional penetration tests

are often limited in their ability to evaluate these

non-technical attack vectors effectively.

2.5 Inefficient Resource Allocation

Traditional penetration testing can be resource-

intensive, both in terms of time and personnel.

Given the manual nature of the process, it can take

several days, or even weeks, to complete a

thorough assessment, especially when testers are

tasked with simulating multiple attack vectors and

evaluating defenses.

Time-Consuming: Penetration testers often spend

significant amounts of time manually verifying

vulnerabilities, running exploits, and documenting

findings. The slow pace of traditional testing means

that attackers may already have adapted or found

new attack paths by the time the test results are

delivered.

High Costs: Traditional penetration testing is often

expensive due to the manpower required and the

high level of expertise needed. For organizations

with limited resources, this can be a barrier to

regular security assessments.

3 APTM: The Adversarial

Penetration Testing Model
The Adversarial Penetration Testing Model (APTM)

introduces a paradigm shift in the way penetration

testing is conducted, moving beyond the traditional

framework that relies on static checklists, scripts,

and predictable actions. It incorporates

mathematical models, probabilistic decision-

making, and real-time adaptation to assess security

from a more holistic, intelligent perspective. The

model incorporates both deterministic and non-

deterministic strategies, as well as adaptive

mechanisms to replicate the dynamic and

unpredictable nature of real-world attacks. By

adopting formal mathematical foundations and a

systems theory approach, APTM allows for more

intelligent, feedback-driven, and probabilistically-

informed penetration testing. Unlike traditional

penetration testing, which typically relies on static,

checklist-driven methods, the APTM offers a more

dynamic and adaptive approach, enabling the

simulation of a broader range of attack scenarios

and vulnerabilities. It incorporates mathematical

models, probabilistic decision-making, and real-

time adaptation to assess security from a more

holistic, intelligent perspective.

The core of APTM lies in its ability to model and

simulate an adversarial environment where the

5

goal is to maximize success while minimizing costs,

time, and resources. Through a flexible system,

APTM enables penetration testers to simulate

realistic, evolving attack paths and provides a

framework for both automated and human-driven

offensive security strategies.

3.1 Deterministic Penetration Testing

Techniques

Deterministic penetration testing techniques are

characterized by actions with predictable

outcomes, typically leveraging known

vulnerabilities or following predefined procedures.

These methods focus on well-documented exploits

and configurations where success is often binary if

the necessary preconditions are met. Examples of

such techniques include the exploitation of known

Common Vulnerabilities and Exposures (CVEs),

such as the infamous EternalBlue or Log4Shell

vulnerabilities, or specific exploits like targeting

CVE-2021-34527. Standard reconnaissance steps

like port scanning using tools such as Nmap also

fall into this category. Furthermore, deterministic

techniques encompass password cracking against

known accounts or using standard wordlists and

achieving privilege escalation by taking advantage

of well-understood system misconfigurations.

3.2 Non-Deterministic Penetration Testing

Techniques

While deterministic penetration testing techniques

focus on predictable outcomes from known

vulnerabilities, non-deterministic approaches

embrace uncertainty and probabilistic results to

better simulate the adaptive nature of real-world

adversaries. These techniques are crucial for

exploring unknown system states, dynamic

environmental factors, and human elements, which

often lead to vulnerabilities that static, predefined

methods might miss. Non-deterministic actions,

therefore, involve strategies with probabilistic

outcomes, such as phishing attempts, fuzzing for

zero-day vulnerabilities, hardware glitching, social

engineering, or navigating unmapped network

topologies, reflecting a more realistic and

comprehensive approach to offensive security

assessments.

Figure 1 Non-Deterministic Penetration Testing Techniques Categorization Examples

Examples of the Human-Focused / Social

Engineering techniques include Phishing emails

(varying success based on user awareness and

email filtering), Vishing (or Voice Phishing,

6

attempts to manipulate targets over the phone),

Physical Tailgating / Badge Cloning (success

depends on human factors and physical security),

or Impersonation / Pretexting (role-based

deception to gain access or information).

For application , service and network protocols

attack techniques may include, Fuzzing, Zero-Day

Hunting (Reverse engineering or code auditing to

find new, undocumented flaws), Protocol Anomaly

Injection (generating malformed or unexpected

data to observe system reactions) or Timing

Attacks (exploit time variations in system

responses.)

Examples of Network Exploration & Lateral

Movement activities include ARP Spoofing /

Poisoning (dependent on network topology and

defenses), Credential Guessing without known valid

inputs (e.g., brute-force attempts across multiple

services), SMB Relay or NTLM Downgrade Attacks

(success varies with system configurations), or

DNS Rebinding or Cache Poisoning (relies on

browser behavior, caching layers, and timing).

The Cloud & API attack techniques include IAM

Privilege Escalation (e.g. brute force), using

misconfigured trust relationships in cloud

environments, API Abuse (e.g., undocumented

endpoints) which requires probing and guessing

undocumented API routes or parameters.

The Infrastructure Targeting techniques may

include, Blind SQL Injection, requires trial-and-

error inference due to lack of direct feedback,

Command Injection in Obscure Inputs (e.g., testing

headers, fields, or metadata often overlooked) and

File Upload Bypass Attempts (circumventing MIME

type filters or file extension blocks).

Examples of Adversarial Machine Learning / AI

attack techniques include Model Evasion / Input

Manipulation by targeting AI systems with

adversarial input samples [6] or Training Data

Poisoning, altering model behavior via controlled

input over time [3].

3.3 Formalization of the APTM

At the heart of APTM is a formal mathematical

structure (M) that models the penetration testing

process as a 5-tuple M=(S,A,T,R,γ). This framework

is inspired by decision-making models[1] and game

theory [12], with each component representing a

key aspect of the adversarial system.

The formal definition of the APTM represents the

key components necessary for simulating an

adversarial penetration testing approach:

Where:

S (States): The set of possible states representing

the system at various points (e.g., "User access

gained", "Firewall bypassed"). These states

represent different configurations of the

environment or target systems, such as

compromised or un-compromised system

configurations, firewall statuses, active services, or

the position of an attacker within the network.

A (Actions): The set of possible actions an agent

(attacker) can take. These are divided into:

• AD: Deterministic actions with known

outcomes, such as exploiting a well-

documented vulnerability (e.g., exploiting

a known CVE).

• AN: Non-deterministic actions with

probabilistic outcomes, such as phishing

attempts, social engineering, or lateral

movement within an unknown network

topology.

A = AD ∪ AN

T (Transitions): The transition probability function

T, which represents the probability of moving from

one state to another given a specific action. The

transition function is defined as:

T : S × A × S → [0,1]

The transition probability function defines how

likely is to move from one state s to another state

s′, considering the action A taken by the agent. the

agent.

R (Rewards): The reward function R, which assigns

a real number to each state in the environment

based on how advantageous that state is relative to

7

the agent’s goal. In the context of penetration

testing, the reward might represent the degree to

which a goal (e.g., gaining admin access or

exfiltrating proprietary data) has been achieved:

𝑹 ∶ 𝑺 → ℝ

Positive rewards indicate progress towards

adversarial goals, while negative rewards may

represent wasted resources or detection of attack

activity and thus a penalty.

γ: The discount factor, which reflects the agent’s

preference for immediate versus long-term

rewards. A value closer to 1 indicates a longer-term

view, where the agent is more willing to sacrifice

short-term gains for long-term objectives. Discount

factor, weighting long-term rewards:

𝛾 ∈ [0,1]

Together, these components form the foundation of

a formal model that helps characterize the

decision-making process in adversarial penetration

testing. They also facilitate a structured approach

to evaluating potential attack paths, prioritizing

actions, and iterating strategies. This mirrors a

Markov Decision Process (MDP) [13] for

deterministic actions but incorporates Partially

Observable MDP (POMDP)[9] when uncertainty

is introduced (non-deterministic attacks or

unknown system state).

3.4 Environment (E)

The Environment (E) represents the dynamic,

multi-layered digital ecosystem in which the

adversarial agent (the red team) operates. The

environment serves as both the target of the

evaluation and the contextual space where all

interactions, transitions, and strategic evaluations

occur. Unlike simplistic threat models, APTM

defines the environment with fine-grained

granularity and system-level awareness. It

encapsulates not just technical infrastructure, but it

can also incorporate human, behavioral, and

policy-driven variables that influence the outcomes

of both deterministic and non-deterministic

actions. This includes the target systems, the

defenses in place, and the various points of

interaction available to the agent.

The following illustration provides an example of a

typical target Environment but more complex

environments can be represented such as an

industrial controls network or communications

network with signaling plane, partner

interconnections and roaming interfaces or a

product comprised by hardware, software

components, network interfaces, API’s etc.

8

Figure 2 Target Environment Layers

• Infrastructure: Represents the physical

and virtual resources of the system being

evaluated, such as servers, network

devices, workstations, cloud resources,

and databases. The complexity and

configuration of these resources will

influence the agent's strategies. Note that

system can also entail a product,

comprised by various components and

APTM is applied to verify and measure its

security posture.

• Defensive Measures: This includes the

security mechanisms designed to thwart

attacks, such as firewalls, intrusion

detection/prevention systems (IDS/IPS),

endpoint detection and response (EDR)

tools, network segmentation, and

encryption. Furthermore, security

mechanisms of a system representing a

product may include, file-permissions,

Mandatory Access Control (MAC), SMEP

(Supervisor Mode Access Protection) and

SMAP (Supervisor Mode Address

Protection) to prevent attackers from

executing user-space code. These

defensive measures provide resistance to

the agent’s actions and may dynamically

adapt over time, which is modeled in

APTM through the feedback loop.

• Access Points: These are the potential

vectors through which the agent can

attempt to infiltrate the system. Access

points could include exposed services,

open ports, misconfigurations, APIs, or

unpatched vulnerabilities that the agent

can exploit to gain a foothold.

• Human Layer: This refers to the social

engineering aspect of the environment,

such as employees and user behavior.

Social engineering tactics like phishing,

pretexting, and baiting can be used to

manipulate individuals into unwittingly

assisting the agent in gaining access to the

system. This layer adds an unpredictable

and dynamic element to the environment.

The environment (E) is formalized as a context-

sensitive structure:

E= {I, A , S, H, P}

9

Where I is the infrastructure configuration, A the

active applications and exposed services, S

represents the security controls in place, H the

human actors and behavior profiles and P the

organizational policies. Each of these can change

during the course of a penetration test (e.g.,

detected events might activate IDS, generate logs

and alerts, enhance firewall filtering and/or alert

SOC teams and consequently altering S in mid-

operation). Thus, in the APTM model, the

environment is not considered static since it can

react to agent actions through various reactive

controls including, alerts and Logging (e.g., system

violations or device tamper resistant sensor

activation), adaptive defense (e.g., Supervisor Mode

Access Protection, auto-scaling WAF rules),

lockouts or account suspensions and trigger

incident response (e.g., endpoint isolation).

This introduces real-time feedback, enabling the

agent to learn from failed or successful actions via

the feedback loop Λ, creating a partially

observable and adaptive environment. The

richness of the environment determines how

closely APTM mimics real-world adversaries. A

robust model includes a probabilistic modeling of

human reactions., temporal elements (e.g., time of

day affects access or user behavior), environmental

noise (e.g., legitimate traffic, benign alerts) along

with Unknown unknowns; elements the agent has

no prior knowledge of, necessitating exploration.

The environment directly influences, the choice of

actions (what’s possible or worth attempting), the

success of actions (what defenses are

encountered), the strategy (e.g., stealthy evasion

vs. brute-force escalation) and learning (how

agent policies adapt based on environmental

feedback).

3.5 Agent (A)

The Agent (A) represents the adversary navigating

the environment to achieve specific goals, such as

data exfiltration, privilege escalation, or persistent

access. The agent is the intelligent, goal-directed

entity executing both deterministic and non-

deterministic actions based on a strategic policy

and feedback from the environment. The agent

could be a human (red team operator), an

automated tool (scripted system or tool), or an

AI/ML-driven agent that learns and adapts its

strategies over time.

This agent can be instantiated as a human red team

operator, an automated script-based attack system,

or more powerfully, an AI/ML-driven autonomous

attacker An agent in APTM is defined by three core

traits:

i. Knowledge Base (K): Represents the

information the agent has about the

environment, such as system

configurations, previously discovered

vulnerabilities, and known defenses. In

the case of AI agents, this knowledge base

is continually updated based on feedback

and previous actions. This represents the

information the agent has about (a) the

environment state S, (b) known

vulnerabilities (c) toolsets and

capabilities and (d) historical outcomes

(prior successes/failures). The knowledge

base evolves over time as the agent

performs reconnaissance or receives

feedback from executed actions.

ii. Strategy (Σ): The strategy or plan that

the agent follows, which governs which

actions it selects based on the current

state of the system. A strategy might

involve deterministic actions (e.g.,

exploiting known vulnerabilities) or non-

deterministic actions (e.g., protocol

fuzzing to identify 0-day vulnerabilities,

trying a new social engineering tactic).

This is the high-level decision framework

used to choose actions based on (a) rule-

based heuristics, (b) cost-reward

balancing, (c) risk tolerance thresholds,

(d) goal prioritization. In deterministic

scenarios, the strategy is simple and rule-

based Σᴰ (deterministic planning tree,

knowledge-driven). In non-deterministic

cases, the strategy Σᴺ incorporates

probability and learning, requiring

adaptive planning (e.g., probabilistic

sampling, fuzzing, ML, intuition,

creativity).

iii. Adaptation Loop (Λ): This loop

represents the agent’s ability to adapt its

strategy based on feedback from the

environment. After each action, the agent

assesses the outcome and updates its

knowledge base accordingly. This

continuous learning process allows the

10

agent to improve its chances of success

over time. The feedback mechanism that

modifies behavior based on (a) action

outcomes (success/failure), (b) changes

in environment, and (c) updates in

knowledge base. The adaptation loop

enables learning-based evolution, where

the agent refines its strategy over time to

optimize future decisions.

The agent A is formally represented as:

A = (K, Σ, Λ)

Where, K is the Evolving knowledge base, Σ is the

strategy function determining action a ∈ A given

current state s ∈ S and Λ (lambda) learning and

adaptation operator, mapping observations to

policy updates.

Types of Agents include, but not limited to:

• Human Pen Tester / Red Teamer

o Intuition-based decision-making

o Guided by experience and real-

time interpretation

o Can simulate irrational or

unpredictable behavior

o Learning is tacit and slow but

creative

• Scripted/Automated Agents

o Predefined action chains

o Linear or tree-like decision

paths

o Quick execution but limited

adaptability

o Can replicate deterministic

behavior with precision

• AI/ML Agents

o Reinforcement learning, Q-

learning, or Bayesian inference

o Probabilistic decision-making

under uncertainty

o Real-time policy optimization

o Capable of modeling stealth,

deception, and complex reward

optimization

These agents represent varying levels of autonomy,

risk modeling, and adaptability, aligning with

different adversary profiles. Given a state s ∈ S, the

agent queries the knowledge base K for known

attributes, (b) applies its strategy Σ to compute

optimal action 𝛼∗∈ A, (c) executes a∗,

transitioning to state s′ with probability T(s,a,s′)

and (d) observes feedback and updates K and Σ

using Λ. Furthermore, Agents may be designed

with different cognitive and behavioral profiles

including Aggressive (i.e., prioritize high-reward

actions, even if risky, Cautious (i.e., Favor stealth

and low-risk actions, even if slower) or

Opportunistic (i.e., shift dynamically based on

environment state and learned cues). This enables

simulation of realistic threat actors with distinct

behavioral patterns, enhancing the training value

for blue teams and automated defense systems.

And the agent can be designed to operate in a

continuous loop using action categories such as

Sense (observe the current state), Plan (select

action), Act (execute the action) and Learn

(evaluate outcome and refine policy). This loop

mirrors the traditional "OODA" (Observe, Orient,

Decide, Act) cycle [5], applied in a formal

mathematical context.

3.6 Deterministic vs Non-Deterministic

Actions

In APTM, every action 𝛼 ∈ A taken from a state 𝑠 ∈

𝑺 has a certain probability of success which is

defined as

𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠(𝛼, 𝑠) = Pr [𝑠′|𝑠, 𝑎]

These actions fall into two categories based on

predictability and outcome certainty, Deterministic

and Non-Deterministic actions. This is a key feature

distinguishing deterministic from non-

deterministic penetration testing strategies.

Actions (α) represent the discrete set of operations

that an agent may execute within a given state s ∈ S

in order to transition to a new state s′ ∈ S. Each

action is selected based on strategic considerations,

environmental conditions, and probabilistic

outcomes.

Ρ(𝛼 | 𝑠)

= {

 1, success if 𝑎 ∈ 𝐴𝐷 and preconditions are met
 0 < 𝑝 < 1, success if 𝑎 ∈ 𝐴𝑁

0, failure if action is infeasible fromm state 𝑠

• AD : Set of deterministic actions.

11

• AN : Set of non-deterministic

actions.

• 𝑝: Probability derived from

environmental uncertainty, agent

confidence, past performance, etc.

Deterministic actions (𝜶𝑫) yield predictable

outcomes when preconditions are satisfied

(known inputs yield predictable outputs). Their

success is binary (either successful or not) and

typically based on known information. If an

attacker attempts to exploit a well-documented

vulnerability in a system (such as an outdated

version of a web server with a known exploit), the

outcome is typically deterministic, as long as the

preconditions (e.g., vulnerable version) are met.

Examples of deterministic attacks include,

exploitation of known CVEs (e.g., EternalBlue,

Log4Shell), port scanning, password cracking, or

privilege escalation via misconfigurations. The

probability of success for deterministic actions is

characterized as 𝑃 (𝛼𝐷 | 𝑠) = 1, given state 𝑠

assuming conditions are fully met (or with low

variability in outcome), they are often repeatable

across environments and are frequently targeted

early in attack paths.

Non-deterministic actions (𝜶𝑵) have uncertain

or probabilistic outcomes due to dynamic

environmental factors, human elements, or

unknowns in the system state (i.e., buffer

overflow/underflow, race conditions). Examples

activities, include Phishing (human variability in

response), Fuzzing/Zero-Day discovery, brute force

against unknowns, Social Engineering (e.g., vishing,

pretexting) or propagation in unmapped networks

(e.g., lateral movement through undocumented

infrastructure).

𝑃 (𝛼𝑁|𝑠) = 𝑓(𝐾, Σ, 𝑠, 𝐸)

The variability of success of non-deterministic

actions is 0 < 𝑃 (𝛼𝑁 |𝑠) < 1, (α ∈ 𝐴𝑁) where the

outcome depends on real-time feedback and

environmental dynamics, the risk-reward tradeoff

is often higher and requires adaptive learning and

strategic tuning. The result is dependent on the

agent’s Knowledge base (K), its strategy function

(Σ) and the environment (E) state. Examples of

such actions include:

Protocol Fuzzing: malformed protocol messages

can be interpreted incorrectly by the receiving

service and introduce unexpected behavior

resulting in service or system disruption or

memory overflow and system compromise. Thus,

the unexpected behavior makes the results

probabilistic.

Phishing Attacks: The success of a phishing

attempt is not guaranteed and depends on various

factors such as the context, the skills of the

attacker, and the vigilance of the target.

Social Engineering: An attempt to manipulate a

system administrator into divulging sensitive

information may succeed or fail based on the social

environment.

Table 1 Action Example Comparison

Action Type Predictability Cost Reward Adaptability
Exploit CVE-2021-34527 Deterministic High Low Medium Low
Phishing Campaign Non-Deterministic Medium Medium High High
Nmap Scan Deterministic High Low Low Low
Zero-Day Discovery Non-Deterministic Low High Very High Medium

3.7 Feedback loop and adaptive learning

In traditional penetration testing, once a test is

completed, the feedback is typically provided as a

report, which may contain vulnerabilities and

recommendations for remediation. However, this

process is static and does not allow for the

continuous adaptation that occurs in real-world

adversaries. The feedback loop in the APTM is an

essential component of its dynamic nature. After

each action, the agent assesses the environment's

response, whether it was successful or whether the

system has detected or mitigated the

corresponding attack. This feedback is used to

adjust the agent's knowledge base and strategy and

is formally represented as:

12

Λ𝑡 = 𝑈𝑝𝑑𝑎𝑡𝑒 (𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 , 𝑅, 𝐶, 𝑠𝑡, 𝛼𝑡)

The feedback operator Λ can be implemented using

various learning mechanisms such as

Reinforcement Learning (RL) or Bayesian learning

to maximize the expected cumulative reward over

time [8]. The update function applied at a time step

t modifies the agent’s understanding of action

outcomes and incorporates the observed results of

an action and adjusts future behavior (e.g.,

improves probability estimates, adjusts cost

evaluations, updates strategies) to facilitate the

selection policy π and optimize the agent’s learning

based on which actions are most effective and

under which conditions. The action success

probability 𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 is the agent’s estimate of how

likely action 𝛼 is to succeed in state s and helps

determine whether an action is worth attempting

based on historical data and current state. The

𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 function can be initialized statically or

learned dynamically through Bayesian inference,

reinforcement learning, or other probabilistic

methods.

The learning loop enables agents to identify high-

value low-cost actions, reduce ineffective or risky

behaviors and shift toward strategies with higher

observed success. The update adjusts the action

probabilities, accounting for the outcome of the

action taken. If a certain attack path was detected,

the agent may alter its strategy and choose less

detectable actions. If a defense mechanism was

bypassed, the agent may refine its approach to

increase the chances of future success. For

Reinforcement Learning update (Q-Learning) [14]

we associate each state-action pair with a Q-Value:

𝑄(𝑠, 𝛼) ← 𝑄(𝑠, 𝛼) + 𝜆 [𝑅(𝑠′)

+ 𝛾 max
𝛼′

𝑄 (𝑠′, 𝛼′) − 𝑄(𝑠, 𝛼)]

Where 𝜆 is the learning rate, 𝛾 is the discount

factor, 𝑅(𝑠′) is the reward received after

transitioning to state 𝑠′. This allows the agent to

learn the expected reward for actions and optimize

overtime. To select the most optimal action 𝛼 that

achieves the best score for a given state 𝛼 we use:

𝜋∗(𝑠) = 𝑎𝑟𝑔 max
𝑎

𝑄(𝑠, 𝛼)

For example, in the context of penetration testing

we may have three possible actions, 𝛼1, 𝛼2, 𝛼3 with

expected outcomes:

𝔼[𝑅(𝛼1)] = 5

𝔼[𝑅(𝛼2)] = 12

𝔼[𝑅(𝛼3)] = 9

Then

𝑎𝑟𝑔 max
𝑎 ∈(𝛼1,𝛼2,𝛼3)

𝐸[𝑅(𝛼)] = 𝛼2

Because 𝛼2 has the highest expected reward. In the

APTM agents select the optimal policy 𝜋∗ that

maximizes expected cumulative reward while

minimizing cost and argmax finds the best such

policy:

𝜋∗ = arg max
𝜋

𝔼 [∑ 𝛾𝑡

𝛵

𝑡=0

 (𝑅(𝑠𝑡) − 𝐶(𝛼𝑡))]

Where 𝑅(𝑠𝑡) is the reward for reaching a high-

value state, and 𝑠𝑡is a snapshot of the environment

at the current step (e.g., port 445 is accessible,

credentials for admin obtained or have local root

access). The 𝐶(𝛼𝑡) function represents the cost of

taking action 𝛼𝑡 (e.g., run CVE-2021-34527 exploit

or attempt credential reuse on a different system)

at time t, which helps the agent optimize its actions

based on the observed outcomes, and γ represents

the discount factor balancing short-term vs. long-

term goals. This models intelligent agents that

weigh potential gain against action costs and risks.

Every action incurs a cost 𝐂 measured in terms of,

time 𝐭 (duration to execute), resources 𝐫 (e.g., CPU

usage, bandwidth, system calls, external services),

and stealth risk 𝜹 (likelihood of detection), defined

as the cost function:

𝐶(𝛼) = 𝑡 (𝛼) + 𝑟(𝛼) + 𝛿(𝑎)

Where 𝑡 (𝛼) is the time cost, 𝑟(𝛼) the resource cost

and 𝛿(𝑎) the stealth or detection penalty.

Over time, the agent develops a robust strategy

𝜋∗which dynamically selects the best action based

on both deterministic logic and learned

probabilities, allowing for efficient and realistic

adversarial simulation. This feedback-driven

approach enables red teams and autonomous

agents to emulate real attackers who adapt, learn,

and re-plan based on environmental resistance and

behavioral signals.

13

4 Example: The Silent Slice,

Penetrating a Private 5G

Network
In this example scenario we apply the APTM to

intercept sensitive sensor data in from a private 5G

network by simulating a sophisticated, adaptive

adversary.

Figure 3 APTM applied during Private 5G Penetration Testing scenario

Phase 1: Breaching the Perimeter (S0 → S1)

Starting from an external position with no access

(State S0), the agent initiates its campaign. An

initial non-deterministic action (AN) involves

identifying exposed APIs related to the 5G

network's edge components; this yields no

immediate entry but provides valuable

environmental feedback. Adapting its strategy, the

agent then executes a deterministic action (AD),

leveraging Open Source Intelligence (OSINT) to

identify and exploit a known vulnerability in an

internet-facing staging server within the target

infrastructure. This grants the first crucial foothold,

transitioning the agent to State S1: IT Foothold

(Staging Server Compromised). The cost (C) for

this initial breach is moderate, with a medium

probability of success (P_success).

Phase 2: From IT to the 5G Core's Edge (S1 →

S2)

Now inside the IT network, the agent performs

deterministic scanning (AD) of the Operations &

Maintenance (O&M) segment, to which the

compromised server has unintended access. This

reveals the presence of key 5G Network Functions

(NFs). The focus then shifts to a critical non-

deterministic action (AN), protocol fuzzing against

the Network Repository Function (NRF). The NRF

is vital for service discovery within the 5G core.

This fuzzing campaign is resource-intensive (high

14

Cost) with a low initial probability of success.

However, the APTM's feedback loop is key; the

agent meticulously tunes its fuzzing parameters

based on the NRF's responses, eventually

triggering an unexpected behavior, an anomaly

that doesn't crash the NRF but indicates a subtle

flaw. This marks the transition to State S2: NRF

Anomaly Identified.

Phase 3: Leveraging Leaks and Targeting the

User Plane (S2 → S3 → S4)

The NRF anomaly, upon closer analysis (a

deterministic action, AD), reveals a minor

information leak: internal configuration details,

including identifiers for User Plane Functions

(UPFs) associated with specific network slices,

particularly the one handling sensor data. This

valuable intelligence propels the agent to State S3:

UPF for Sensor Slice Identified. The cost for this

analysis is low, and success is high given the prior

discovery.

The agent initially attempts a non-deterministic

action (AN): trying to manipulate network slice

information or hop between slices based on the

NRF leak. This proves unsuccessful but provides

further environmental feedback. Adapting, the

agent now focuses on the identified UPF and

executes a deterministic action (AD): exploiting a

known, unpatched CVE specific to that UPF model.

This CVE allows a bypass of certain filtering rules

when initiated from a trusted internal source

(which the agent now emulates from the

compromised IT segment). This targeted exploit

leads to State S4: Partial UPF Bypass Achieved,

with a moderate cost and probability of success.

Phase 4: Achieving the Objective (S4 → S5)

With the UPF partially bypassed, the agent

executes its final set of deterministic actions (AD),

redirecting a portion of the traffic flowing through

the compromised UPF. This allows the interception

of telemetry data from the targeted sensor network

slice. The cost is low, and success is high,

culminating in State S5: Sensitive Sensor Data

Intercepted. The primary objective of the

penetration test is achieved.

Throughout this simulated attack, each action

carried a variable probability of detection

(P_detect), which, if triggered, would have shifted

the agent to State S_DETECTED. The APTM

framework allowed for this dynamic interplay of

deterministic exploitation of knowns and non-

deterministic probing of unknowns, guided by

continuous feedback and adaptation, providing a

far deeper understanding of the private 5G

network's vulnerabilities than a traditional test

could offer.

5 Conclusion
Penetration testing, as traditionally practiced,

relies on static methods, predefined checklists, and

predictable tools. These approaches, while effective

in some cases, often fail to account for the dynamic

nature of modern cybersecurity threats.

Traditional methods typically rely on well-

documented exploits and predictable outcomes,

limiting the adaptability and efficiency required to

simulate intelligent adversaries. This static nature

of penetration testing leaves security teams

vulnerable to evolving threats and new attack

vectors. The Adversarial Penetration Testing Model

(APTM) offers a transformative shift in this

paradigm by incorporating both deterministic and

non-deterministic strategies into the penetration

testing process. By integrating mathematical

modeling, feedback loops, and adaptive learning,

APTM redefines how penetration tests are

executed and evaluated. The model allows for more

realistic and effective simulations of adversaries by

combining predictable, scripted exploits with

probabilistic, adaptive strategies. This hybrid

approach better mimics real-world adversarial

behavior and provides security teams with more

comprehensive and accurate assessments of

system vulnerabilities. As cyber threats continue to

evolve and become more sophisticated, the need

for a testing framework that can dynamically adapt

to new attack techniques and defensive

countermeasures becomes increasingly important.

The APTM provides the flexibility and intelligence

required to simulate realistic adversarial behavior,

enabling defenders to test not only the technical

resilience of their systems but also the adaptability

of their detection and response strategies. By

modeling the attacker as an agent capable of

learning, adapting, and balancing risks, APTM

supports the development of more robust security

postures and better prepares organizations for

advanced, persistent threats in an ever-evolving

threat landscape.

15

6 References

1. Bellman, R. (1957). Dynamic Programming. Princeton University Press.
2. Bertalanffy, L. von. (1968). General System Theory: Foundations, Development, Applications. George Braziller.
3. Biggio, B., Nelson, B., & Laskov, P. (2012). Poisoning Attacks against Support Vector Machines. Proceedings of

the 29th International Conference on Machine Learning (ICML-12), 1467-1474.
4. Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
5. Boyd, J. R. (1986). Patterns of Conflict. (Unpublished briefing).
6. Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014), Explaining and Harnessing Adversarial Examples. arXiv

preprint arXiv:1412.6572.
7. Jakobsson, M., & Myers, S. (Eds.), (2006) Phishing and Countermeasures: Understanding the Increasing

Problem of Electronic Identity Theft. John Wiley & Sons.
8. Richard S. Sutton and Andrew G. Barto, (2018) Reinforcement Learning: An Introduction
9. Leslie P. Kaelbling, Michael L. Littman, Anthony R. Cassandra, 1998 Planning and acting in partially

observable stochastic domains, Elsevier, Artificial Intelligence
10. V. Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton University

Press.
11. H. Raiffa, 1968 Decision Analysis. Introductory Lectures on Choices under Uncertainty. Reading,

Massachussets, Addison-Wesley, 1968
12. Myerson, R. B. (1991). Game Theory: Analysis of Conflict. Harvard University Press.

https://doi.org/10.2307/j.ctvjsf522

13. Martin L. Puterman (2014). Markov Decision Processes: Discrete Stochastic Dynamic Programming, Wiley

14. Watkins, C.J.C.H., Dayan, (1992) P. Q-learning. Mach Learning, Springer

https://doi.org/10.2307/j.ctvjsf522
https://www.wiley.com/en-us/search?filters%5bauthor%5d=Martin%20L.%20Puterman&pq=++

